Characterization of the Molecular Mechanism of the Bone-Anabolic Activity of Carfilzomib in Multiple Myeloma

نویسندگان

  • Bo Hu
  • Yu Chen
  • Saad Z. Usmani
  • Shiqiao Ye
  • Wei Qiang
  • Xenofon Papanikolaou
  • Christoph J. Heuck
  • Shmuel Yaccoby
  • Bart O. Williams
  • Frits Van Rhee
  • Bart Barlogie
  • Joshua Epstein
  • Ya-Wei Qiang
چکیده

Carfilzomib, the next generation of proteasome inhibitor, may increase osteoblast-related markers in patients with multiple myeloma, but the molecular mechanism of its effect on mesenchymal stem cell differentiation to osteoblasts remains unknown. Herein, we demonstrated that carfilzomib significantly promoted mesenchymal stem cell differentiation into osteoblasts. In osteoprogenitor cells and primary mesenchymal stem cells from patients with myeloma, carfilzomib induced increases in alkaline phosphatase activity, matrix mineralization, and calcium deposition via Wnt-independent activation of β-catenin/TCF signaling. Using affinity pull-down assays with immunoblotting analysis and immunofluorescence, we found that carfilzomib induced stabilization of both free and active forms of β-catenin in a time- and dose-dependent manner that was not associated with β-catenin transcriptional regulation. Nuclear translocation of β-catenin protein was associated with TCF transcriptional activity that was independent of the effects of GSK3β-activation and of signaling induced by 19 Wnt ligands, 10 Frizzled receptors, and LRP5/6 co-receptors. Blocking activation of β-catenin/TCF signaling by dominant negative TCF1 or TCF4 attenuated carfilzomib-induced matrix mineralization. Thus, carfilzomib induced osteoblast differentiation via Wnt-independent activation of the β-catenin/TCF pathway. These results provide a novel molecular mechanism critical to understanding the anabolic role of carfilzomib on myeloma-induced bone disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Effect of Pomalidomide on Bone Marrow Mononuclear Cells from Multiple Myeloma Patients

Background: Many features of anticancer drugs, including cytotoxicity and/or cytokine induction, are studied using cell lines orhuman blood leukocytes. However, in a disease such as multiple myeloma, most cancerous cells are resided within bone marrowmononuclear cells. In the present study, we investigated the effect of pomalidomide on apoptosis and IL-2 production of bonemarrow mononuclear cel...

متن کامل

Multiple myeloma in a patient with suspected hyperparathyroidism

Multiple myeloma (MM) is a clonal B-lymphocyte neoplasm of terminally differentiated plasma cells. Imaging modalities which allow the recognition of the effects of myeloma cells on the skeletal system have been utilized for a long time. Herein, we represent a patient with generalized osteoporosis and hypercalcemia, who was referred for parathyroid scan, in whom the widespread bone marrow techne...

متن کامل

بررسی اثر داروی ضد سرطانی پومالیدومید بر فعالیت حیاتی و القای آپوپتوز سلول‌های تک هسته‌ای مغز استخوان

Background and Objective: Pomalidomide - a combination of Lenalidomide and Thalidomide drugs- is one of the newest anticancer drugs. Pomalidomide induces apoptosis in cancer cells. Furthermore, few studies indicating its relatively low cytotoxic effects on normal peripheral blood cells have been carried out. However, there is yet no information about the effects of Pomalidomide on bone marrow c...

متن کامل

Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteas...

متن کامل

Non Secretory Multiple Myeloma With HCV Infection: A Rare Case Entity

Multiple Myeloma is a neoplasm of B cell lineage characterized by excessive proliferation of abnormal plasma cells. It is characterized by a clinical  pentad of 1) anemia, 2) a monoclonal protein in the serum or the urine or both, 3) bone leisons and or bone pain, 4) hypercalcemia >11.5g/dl and 5) renal insufficiency. Non secretory multiple myeloma is a rare variant of the classic form of multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013